Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Rev. Hosp. Ital. B. Aires (2004) ; 40(3): 117-125, sept. 2020. ilus, tab
Article in Spanish | LILACS | ID: biblio-1129078

ABSTRACT

En diciembre de 2019 se identificó el virus SARS-CoV-2, cuya rápida propagación global puso en estado de emergencia al mundo entero, llevando al ser humano a una situación sin antecedente cercano. El objetivo de esta revisión es describir los métodos diagnósticos utilizados actualmente para identificar la infección por SARS-CoV-2. Las manifestaciones clínicas y el espectro imagenológico de la enfermedad son muy inespecíficos y no permiten realizar un diagnóstico certero. Por esta razón, es esencial una apropiada toma de muestra respiratoria en el momento y sitio anatómico adecuado para un diagnóstico preciso de COVID-19. La técnica de muestreo más utilizada es el hisopado nasofaríngeo y la prueba diagnóstica más fiable se basa en la retrotranscripción seguida por reacción en cadena de la polimerasa en tiempo real (RT-PCR). No obstante, existen otras técnicas moleculares, como también tests serológicos para detectar anticuerpos o fragmentos antigénicos del SARS-CoV-2. Más allá de la precisión diagnóstica, es importante tener en cuenta la probabilidad basal (pretest) para interpretar correctamente el resultado obtenido y aislar aquellos posibles falsos negativos. Con el objetivo de evitar la saturación del sistema de salud es imprescindible contar con información y métodos diagnósticos precisos para detectar tempranamente los focos de infección y reducir la transmisión comunitaria, utilizando eficazmente los diferentes recursos diagnósticos. (AU)


In December 2019, the SARS-CoV-2 virus was identified for the first time, whose rapid global spread put the entire world in a state of emergency, leading humans to an unprecedented situation with no immediate history. The main purpose of this review is to describe the diagnostic methods currently used to identify SARS-CoV-2 infection. The clinical manifestations and the imaging spectrum of the disease are nonspecific and do not allow an accurate diagnosis to be made. For this reason, an appropriate respiratory sampling at the right time and anatomical site is essential for an accurate diagnosis of COVID-19. The most widely used sampling technique is nasopharyngeal swab, and the most reliable diagnostic test is by reverse transcription followed by real-time polymerase chain reaction (RT-PCR). However, there are other molecular techniques, as well as serological tests to detect antibodies or antigenic fragments of SARS-CoV-2. Beyond the diagnostic precision, it is important to take into account the baseline probability (pre-test) to correctly interpret the result obtained and isolate those possible false negatives. In order to avoid saturation of the health system, it is essential to have accurate information and diagnostic methods to detect outbreaks of infection in early stages and to reduce communitary transmission, making effective use of the various diagnostic resources. Coronavirus infections/diagnosis, viral/diagnosis, pandemics, clinical laboratory techniques, real-time polymerase chain reaction, antigens, viral/analysis. (AU)


Subject(s)
Humans , Serologic Tests/methods , Coronavirus Infections/diagnosis , Real-Time Polymerase Chain Reaction/methods , Argentina , Pneumonia, Viral/diagnosis , Serologic Tests/statistics & numerical data , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/statistics & numerical data , Coronavirus Infections/physiopathology , Coronavirus Infections/prevention & control , Coronavirus Infections/diagnostic imaging , False Negative Reactions , False Positive Reactions , Real-Time Polymerase Chain Reaction/statistics & numerical data , Betacoronavirus
2.
Journal of Modern Laboratory Medicine ; (4): 1-4,9, 2017.
Article in Chinese | WPRIM | ID: wpr-606639

ABSTRACT

In clinical laboratory medicine,measurement uncertainty (MU) is a fixed property of testing results in the measuring system.As an important part of ISO 15189,it is necessary for clinical laboratories to determine MU during the period of validation and verification for each measurement procedure and to review MU over time.Now,testing reports provided by clinical laboratories usually do not offer MU,but some clinical laboratories have already estimated MU in their routine work.Estimation andmonitoring of MU can help clinical laboratories offering more accurate results and provide objective tools for clinicians used in result intcrpretatinn.Generally,result interpretation can be achieved by the result comparison with three main comparators,including a previous result from the same patient,a population reference interval and a clinical decision point.The means of true value and the components contributing to the estimation of MU are both different when the com parison is conducted between testing results and different comparators,so the optimum estimation method of MU is accordingly different,which will subsequently affect the MU value and the determination of clinical decisions.Obviously,depending on the actual clinical uses,laboratories can choose appropriate comparators to the result interpretation and the determination of optimum estimation method of MU.For different clinical uses (diagnosis or monitoring) of the same mearurands,the adoption of different estimation methods should be used to acq uire reasonable MU.By interpreting the concept,characteristics,estimation,and uses of MU,as well as explaining how three main comparison methods of results exploit their own traceable chain to get MU,this paper intends to help clinical laboratories get further understanding of the importancc of MU and provide guidance for the MU estimation in routine work.

SELECTION OF CITATIONS
SEARCH DETAIL